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Abstract 

Background:  Mobile colistin resistance like gene (mcr-like gene) is a new type of polymyxin resistance gene that can 
be horizontally transferred in the Enterobacteriaceae. This has brought great challenges to the treatment of multidrug-
resistant Escherichia coli and K. pneumoniae.

Results:  K. pneumoniae 16BU137 and E. coli 17MR471 were isolated from the bus and subway handrails in Guang‑
zhou, China. K. pneumoniae 19PDR22 and KP20191015 were isolated from patients with urinary tract infection and 
severe pneumonia in Anhui, China. Sequence analysis indicated that the mcr-1.1 gene was present on the chromo‑
some of E. coli 17MR471, and the gene was in the gene cassette containing pap2 and two copies of ISApl1.The mcr-1.1 
was found in the putative IncX4 type plasmid p16BU137_mcr-1.1 of K. pneumoniae 16BU137, but ISApl1 was not 
found in its flanking sequence. Mcr-8 variants were found in the putative IncFIB/ IncFII plasmid pKP20191015_mcr-8 of 
K. pneumoniae KP20191015 and flanked by ISEcl1 and ISKpn26.

Conclusion:  This study provides timely information on Enterobacteriaceae bacteria carrying mcr-like genes, and pro‑
vides a reference for studying the spread of mcr-1 in China and globally.
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Introduction
Polymyxin is a cyclic lipopeptide antibiotic discovered by 
Ainsworth et al. [1] in the 1940s. In 1959 [2], polymyxin 
B and colistin (polymyxin E) were introduced into clinical 
practice and used to treat infections caused by gram-neg-
ative bacteria. Due to the strong nephrotoxicity and neu-
rotoxicity, and the popularity of more “safe” antibiotics 

such as beta-lactam antibiotics, polymyxins had not been 
used in clinical treatments in the following decades. In 
the past two decades, the outbreak of multidrug resist-
ant (MDR) gram-negative bacteria and the lack of new 
antibiotics have caused polymyxins to return to clinical 
application as the last line of defense against gram-nega-
tive bacteria [3].

The resistance mechanisms of bacteria to polymyxins 
are mainly divided into two categories, two-component 
system [4, 5] and hyperproduction of CPS capsular poly-
saccharide (CPS) [6]. The two-component system mainly 
regulates polymyxin resistance by PhoPQ and PmrAB 
in Enterobacteriaceae, such as Pseudomonas aeruginosa 
and Salmonella enterica server Typhimurium. PhoQ 
can phosphorylate and activate PhoP in the presence of 
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polymyxin. PhoP can increase the positive charge of the 
outer membrane of the bacteria and the resistance to pol-
ymyxins by activating the pmrHFIJKLM operon, causing 
lipid A to be modified by 4-amino-4-arabinose. Hyper-
production of CPS generally occurs in K. pneumoniae. 
Some K. pneumoniae strains can reduce the interaction 
between polymyxin and bacterial surface by synthesizing 
large amounts of CPS, which leading to the development 
of polymyxin resistance. Efflux pumps of some Gram-
negative bacteria (such as AcrAB [7] and KpnEF [8] of K. 
pneumoniae) can participate in the resistance of bacte-
ria to polymyxins, but the molecular mechanism is not 
yet clear. Although bacteria have evolved multiple poly-
myxin-resistance mechanisms, these mechanisms often 
require sacrificing their own development and are diffi-
cult to disseminate horizontally between strains. These 
factors limit the spread of these resistant genes among 
strains. However, in 2015, China reported a new colistin 
resistance gene, mcr-1, carried by E. coli in the intestine 
of edible pigs, can be transferred horizontally in Entero-
bacteriaceae [9]. According to statistics before 2016, mcr-
1 positive strains have been reported in more than 40 
countries [10], spreading across 7 continents, and may be 
further expanded. Several reports have shown that many 
drug-resistant genes, such as New Delhi β-lactamase 
(NDM) and other extended spectrum β-lactamase genes 
(ESBLs), were frequently found in the strains carrying 
mcr-1 [11, 12]. The emergence of mcr-1 not only sub-
verted our understanding of polymyxin resistance genes, 
but also greatly increased the difficulty of treating MDR 
pathogenic microorganisms.

MCR-1 is a phosphoethanolamine (PEA) transferase 
with a 5-fold hydrophobic transmembrane helix located 
in the periplasmic domain and can reduce the net nega-
tive charge of the outer membrane of the bacteria by 
modifying PEA on the negatively charged lipid A on the 
lipopolysaccharide (LPS) of the bacteria [13]. The modi-
fication reduces the interaction of polymyxin on the 
outer membrane of bacteria, which in turn produces 
resistance to polymyxin [14]. Generally, mcr-1 forms a 
complex transposon Tn 6330 with the surrounding trans-
poson sequence ISApl1 [15]. The complex transposon 
consists of a sequence of about 2600 bp containing mcr-
1 (1626 bp), a PAP2 superfamily protein encoding gene 
(765 bp), and ISApl1 transposon insertions on both sides 
[16]. ISApl1 belongs to the IS30 family and therefore has 
similar functions and activities to IS30 members [17]. It 
is flanked by 27 bp inverted repeats (referred to as IRL 
and IRR) and contains a 927 bp open reading frame (orf). 
The ISApl1 transposon will self-cleave to form a circular 
sequence intermediate (ISApl1)2-mcr-1-pap2 [18, 19] if 
the ISApl1 transposon exists around the mcr-1 gene. The 
circular intermediate contains 2 bp of host flanking DNA 

between adjacent ISApl1 transposon ends and generates 
2 bp of target site duplications (TSDs) after integration 
[20]. When the mcr-1 circular intermediate is integrated 
into the plasmid or genome of another strain, there is a 
probability that the ISApl1 transposon sequence will be 
lost. Loss of ISApl1 stabilizes mcr-1 in the plasmid or 
genome, which is conducive to the widespread spread of 
mcr-1.

Epidemiological studies have found that mcr-1 can be 
horizontally transferred in more than a dozen Entero-
bacteriaceae, mainly including E. coli, K. pneumoniae, 
Salmonella spp. [21], Enterobacter aerogenes [22], P. aer-
uginosa [23], Proteus putida [24], Enterobacter cloacae 
[22], Cronobacter sakazakii [25], Shigella sonnei [26], 
Kluyvera ascorbate [27], Raoultella ornithinolytica [28], 
Achromobacter spp [23] and Citrobacter spp [29]. These 
bacteria are mainly transmitted in nature through soil, 
water, food chains and animal migration [30, 31], and 
further lead to the global spread of mcr-1. The whole 
genome sequencing results of mcr-1 positive strains 
showed that the mcr-1-bearing plasmids were mainly 
IncI2, IncX4, IncHI2 [32], IncP [33], IncHI1 [34], IncFI, 
IncFII [35], IncFIB [36], IncK [37], IncY [38], IncN [31], 
F18:A–:B+ [39]. Among them, IncI2, IncX4 and IncHI2 
are the main replicons, and are all conjugative transfer 
plasmids. These carried plasmids can be stably present in 
the recipient bacteria even in the absence of polymyxin.

Since mcr-1 was discovered, not only twenty-five 
genetic variants of the mcr-1 gene (such as mcr-1.1, mcr-
1.2, etc.) were reported all over the world [40, 41], but 
also a variety of mcr-like genes were discovered, which 
were named mcr-1, mcr-2 [42], mcr-3 [43], mcr-4 [44], 
mcr-5 [45], mcr-6 [46], mcr-7 [47], mcr-8 [48], mcr-9 [49] 
and mcr-10 [50]. Among them, mcr-2 and mcr-3 were 
found in E. coli. Mcr-4, mcr-5 and mcr-9 were found in 
S. enterica subsp. The mcr-7 and mcr-8 were found in 
K. pneumoniae. The mcr-6 was found in Moraxella spp. 
These proteins encoded by these mcr-like genes have 
different amino acid sequence identity with MCR-1. 
MCR-6 has the highest amino acid sequence similarity to 
MCR-1 (82.7%), while MCR-4 has the lowest amino acid 
sequence similarity to MCR-1 (32.1%), so their sources 
are not the same. Among them, MCR-1 and MCR-2 
are similar in structure, and there are PAP2 family pro-
tein coding genes downstream of the coding genes, and 
the transposition element located near mcr-2 is IS1595 
instead of ISApl1. The structures of MCR-3, MCR-4 and 
MCR-9 are similar. In addition, Teo et  al. [51], showed 
that the coexistence of some mcr-like genes did not sig-
nificantly improve the polymyxin resistance of clinical 
Enterobacteriaceae strains.

In the current study, we performed a third-generation 
genome sequencing analysis of three strains of polymyxin 
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B resistant K. pneumoniae (16BU137, KP20191015 and 
19PDR22) and one strain of polymyxin B resistant E. coli 
(17MR471) from patients and environment. Then we 
combined with the phenotypes of related experiments to 
explain the resistance mechanism of mcr-like genes.

Results
Four multidrug‑resistant strains all showed colistin 
resistance
We obtained four MDR strains resistant to polymyxin 
B, including three strains of K. pneumoniae (16BU137, 
KP20191015 and 19PDR22) and one strain of E. coli 
(17MR471). According to the whole-genome three-
generation sequencing results, E. coli 17MR471 and K. 
pneumoniae 16BU137 carried the mcr-1.1 genes, and 
K. pneumoniae KP20191015 carried the mcr-8.2 gene 
(Fig.  1A). To determine the phenotypes of these four 
strains, we performed the determination of MIC value 

(Table  1). Based on polymyxin B resistance criteria 
(USCAST, MICs, ≥4 μg/ml) [53], these strains were iden-
tified as polymyxin B resistant strains. The MIC values 
of the four strains were 4 μg/ml (E. coli 17MR471), 8 μg/
ml (K. pneumoniae 16BU137), 32 μg/ml (K. pneumoniae 
KP20191015) and 64 μg/ml (K. pneumoniae 19PDR22). 
Among these strains, K. pneumoniae 19PDR22 has the 
highest MIC value and E. coli 17MR471 has the lowest 
MIC value.

Transferability of mcr‑1‑ and mcr‑8‑carring plasmids
Transconjugants conjugate of J53 and 16BU137 is 
called J53-16BU137, and transconjugants of J53 and 
KP20191015 is called J53-KP20191015. Through the 
drug susceptibility test, we found that neither 16BU137 
nor KP20191015 can grow on MH plates containing 
100 mg/L of sodium azide. PCR detection of mcr-like 
gene and K. pneumoniae-specific gene was performed 

p16BU137_mcr-1.1

IncX4  type

K. pneumoniae 

17MR471_chromosome

E. coli 

pKP20191015_mcr-8

IncFIB/ IncFII type

K. pneumoniae 
mcr-8 ISEcl1ISKpn26

ISApl1 mcr-1.1pap2 ISApl1

mcr-1.1pap2

19PDR22_chromosome

K. pneumoniae IS903mgrB

Fig. 1  The genetic environment of mcr-like genes and mgrB. A The genome of E. coli 17MR471 contains the mcr-1.1 gene. The IncX4 type plasmid 
p16BU137_mcr-1.1 of K. pneumoniae 16BU137 contains the mcr-1.1 gene. The IncFIB/ IncFII type plasmid pKP20191015_mcr-8 of K. pneumoniae 
KP20191015 contains the mcr-8 variant. No mcr-like gene was detected in K. pneumoniae 19PDR22. B The upstream sequence of mgrB in 19PDR22 
was inserted by IS903. The arrow box indicate the target site for insertion of IS903 

Table 1  Strains used in this study

a Source, source of isolates
b Data, date of isolate collection
c Region, geographic location of isolate collection

Strain Sourcea MIC of polymyxin B (μg/
ml)

MLST Datab Regionc

Strains

16BU137 Bus handrail 8 37 2016.12.17 Guangdong, China

17MR471 Subway handrail 4 1437 2017.10.28 Guangdong, China

KP20191015 Sputum 32 340 2019.08.02 Anhui, China

19PDR22 Urine 64 11 2019.09.16 Anhui, China

J53 [52] Laboratory 0.5 10 2018.05.24 Kyoto, Japan

J53-16BU137 Laboratory 4 10 2021.01.02 Anhui, China
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on all transconjugants. Using wzi gene as a K. pneu-
moniae-specific gene (Table  2). PCR product of J53 
showed no bands in agarose gel electrophoresis, show-
ing negative, and other K. pneumoniae showed positive. 
The PCR result of mcr-1 of J53-16BU137 was positive, 
and the PCR result of wzi was negative, indicating that 
the mcr-1 plasmid carried by 16BU137 was successfully 
transferred to the J53, and the conjugation efficiency was 
1 × 10− 4 per donor cell. The MIC of J53 for polymyxin B 
is 0.5 μg/ml, and the MIC of J53-16BU137 for polymyxin 
B is 4 μg/ml. It is proved that J53 is transformed from a 
polymyxin-sensitive strain into a polymyxin-resistant 
strain after receiving p16BU137_mcr-1.1. Although we 
also performed the same conjugation experiment on 
KP20191015, we did not observe the transfer of the plas-
mid carrying mcr-8 from KP20191015 to J53, which may 
indicate that the mcr-8 plasmid carried by KP20191015 is 
difficult to transfer between different strains.

Genomic profiles of four colistin‑resistant isolates
According to third-generation whole genome sequenc-
ing, the complete genome sequence of E. coli 17MR471 
is 4,765,524 bp, containing 4433 CDS and 87 tRNA; the 
genome of K. pneumoniae 16BU137 is 5,269,011 bp, 
containing 4863 CDS and 86 tRNA; the genome of K. 
pneumoniae KP20191015 is 5,409,809 bp, containing 
5110 CDS and 88 tRNA; the genome of K. pneumoniae 
19PDR22 is 5,396,045 bp, containing 5077 CDS and 87 
tRNA (Fig. 2). E. coli 17MR471 belongs to ST1437, har-
boring colistin resistance gene mcr-1.1 and other seven 
ARGs. K. pneumoniae 16BU137 belongs to ST37, har-
boring mcr-1.1 and other 25 ARGs K. pneumoniae 
KP20191015 belongs to ST340, harboring a mcr-8 variant 
(1698 bp, 99.71% nucleotide identity to mcr-8) and other 
28 ARGs. K. pneumoniae 19PDR22 belongs to ST11, 
while lacked known plasmid-mediated colistin resistance 
gene.

Molecular epidemiological features of mcr‑positive E. coli 
and K. pneumoniae isolates
To better understand the genetic background of these 
colistin-resistant strains, we collected all E. coli isolates 

from Guangdong, China and K. pneumoniae isolates from 
Anhui and Guangdong, China in the NCBI database, 
and conducted a phylogenetic analysis on them (Fig. 3). 
The MLST type of E. coli in Guangdong shows diversi-
fied characteristics. The MLST type of K. pneumoniae 
in Anhui and Guangdong is more concentrated, most of 
which are ST11. Among the isolates we obtained, except 
for KP20191015, none of the other isolates formed an 
independent branch. 17MR471 formed a branch with a 
ST6335 E. coli isolate GDA49. 16BU137 formed a branch 
with K. pneumoniae P10 and P12 isolates of MLST type 
ST4298 from Guangdong. 19PDR22 was clustered with 
ST11 type K. pneumoniae isolates. It is worth noting that 
KP20191015 formed a branch on its own. The K. pneu-
moniae isolates distributed in Anhui and Guangdong 
were intertwined in the phylogenetic tree, which seems 
to indicate that the K. pneumoniae in China has spread 
and needs to be controlled immediately.

Virulence factors and colistin‑related resistance genes 
of four isolates
A total of 48 virulence factors were predicted in E. coli 
17MR471, 16 virulence factors were predicted in K. pneu-
moniae 16BU137, 10 virulence factors were predicted in 
K. pneumoniae KP20191015, 25 virulence factors were 
predicted in K. pneumoniae 19PDR22 (Table 3 and Table 
S1). In E. coli 17MR471, K. pneumoniae KP20191015 and 
K. pneumoniae 19PDR22, the identified virulence factors 
were all located on the chromosomes. In K. pneumoniae 
16BU137, a total of 6 virulence factors located on the 
plasmid were identified. iucA, iucB, iucC, iutA and cseA 
are located on IncFIB(K)/IncFII type plasmids, while 
astA is located on IncQ1/IncFII type plasmid.

Colistin resistance related genes and other resistance 
genes in four isolates are shown in Tables  4 and 5 and 
Table S2. Colistin resistance related genes in K. pneumo-
niae KP20191015 are similar to K. pneumoniae 19PDR22. 
Compared with K. pneumoniae 16BU137, K. pneumoniae 
KP20191015 and K. pneumoniae 19PDR22 may con-
tain more colistin resistance related genes. Among the 
three strains, the types of arnD, eptB, mgrB, opgE, pmrA, 
pmrB, pmrC, and pmrD are the same. Both K. pneumo-
niae KP20191015 and K. pneumoniae 19PDR22 contain 
two types of emrA, two types of emrB, and three types 
of phoP. K. pneumoniae 16BU137 contains one type of 
emrA, one type of emrB, and two types of phoP. In addi-
tion, IS903 inserted on the upstream sequence of mgrB in 
K. pneumoniae 19PDR22 (Fig. 1B), which may affect the 
normal expression of mgrB [56].

Location of mcr‑1.1 on chromosome and plasmid
The mcr-1.1 gene was found to locate on the chromo-
some of E. coli 17MR471. Specifically, the mcr-1-pap2 

Table 2  Sequences of primers used in this study

Primer Oligonucleotide (5′-3′)a Application

mcr-1 -F GTC​AGT​CCG​TTT​GTT​CTT​G Detection

mcr-1 -R GGT​GAC​ATC​AAA​CAG​CTT​ Detection

mcr-8 -F CAA​CAT​AGC​ACT​TTG​GCA​ Detection

mcr-8 -R GGA​AGA​CAG​TGG​TGT​GTG​ Detection

wzi-F ATG​ATA​AAA​ATT​GCG​CGC​AT Detection

wzi-R GCG​TGA​TCC​GTT​GCT​GAT​CC Detection
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gene cassette which encodes both MCR-1 and a hypo-
thetical protein was flanked by two copies of ISApl1 
(1070 bp, IS30 family) upstream and downstream in 
the same orientation. In K. pneumoniae 16BU137, 
mcr-1.1 located in an IncX4-type plasmid which 
named p16BU137_mcr-1.1 (Table S3). This plas-
mid is 33,309 bp in size and is predicted to encode 41 
ORFs for which mcr-1.1 is the only resistance gene. 
No ISApl1 was found in the flanking sequences of 
mcr-1.1 in p16BU137_mcr-1.1(Fig.  4). IncX4 is the 
dominant plasmid type to harbor mcr-1.1 [57]. The 
mcr-1-bearing IncX4 plasmid was firstly identified 

in Germany in 2009. Since 2009, the majority of mcr-
1 genes have been found on IncX4 plasmids. BLASTn 
revealed that the genetic context of mcr-1.1 in IncX4 
plasmids are diverse. The examples included that mcr-
1.1 without flanking ISApl1 (pAF48, KX032520). Also, 
mcr-1-pap2 could be flanked by ISApl1 upstream 
(pMCR-11EC-P293, KX555451), downstream (pPY1, 
KX711708) or both (pC214, KY120363). Plasmids like 
PN42 (MG557854) and pCDF8 (MF175191) have trun-
cated IS elements in flanking regions of mcr-1. It has 
been hypothesized that after the loss of ISApl1, mcr-1 
is immobilized in the plasmids [18].

Fig. 2  Circular chromosome map of K. pneumoniae 16BU137, K. pneumoniae KP20191015, and K. pneumoniae 19PDR22. 16BU137 (accession no. 
CP051161), KP20191015 (accession no. CP051160), 19PDR22 (accession no. CP051159). The map was drawn using BLAST Ring Image Generator 
(BRIG) (http://​sourc​eforge.​net/​proje​cts/​brig/)

http://sourceforge.net/projects/brig/
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A mcr‑8 variant was found in an IncFIB/ IncFII plasmid
In K. pneumoniae KP20191015, a mcr-8 variant was 
found in an 107,661 bp IncFIB/ IncFII plasmid which 
named pKP20191015_mcr-8. mcr-8 was flanked by a 
reverse ISEcl1-like element (1336 bp, 99% identity to 
ISEcl1) upstream. Also, it was flanked by an ISKpn26-like 
element (1196 bp, 99% similarity to ISKpn26) at the same 
direction downstream. Consistent with the sequences in 
the mcr-8-carrying pKP91 (95,983 bp, MG736312) [48], 
both of which carried dgkA, baeS, and copR close to mcr-8 
(Fig. 5). While mcr-8 in pKP91 was flanked by two intact 
IS903B sequences up- and downstream [48], and signifi-
cant differences were observed in the remaining plasmid 
backbone (Fig. 5). BLASTn indicated that pKP20191015_
mcr-8 carried novel components that showed limited 
identity to those known plasmid sequences (coverage 
< 75%). pKP20191015_mcr-8 is organized similar to that 
of plasmid pKP1814–2 (187,349 bp, KX839208) (69% 
coverage, 99.84% identity) identified in K. pneumoniae 
in China; p002SK2_A (159,714 bp, CP025516) (53% cov-
erage, 99.80% identity) identified in K. pneumoniae in 
Switzerland; pKP121–2 (134,208 bp, CP031851) (53% 
coverage, 99.75% identity) identified in K. pneumoniae 
in China. They all carried plasmid transfer associated tra 

locus with different combination and the replicon encod-
ing gene repB.

Discussion
Polymyxins are cyclic, positively charged peptides, which 
were first discovered to possess antibiotic properties in 
the 1940s [58]. Polymyxins can bind to lipid A of lipopol-
ysaccharide (LPS) on the outer membrane of Gram-neg-
ative bacteria, and then displace Mg2+ and Ca2+ from 
cationic binding sites leading to disruption of bacterial 
membrane integrity [58, 59]. Polymyxins (polymyxin B 
and colistin) are a last resort treatment against human 
infections caused by multidrug-resistant (MDR) Gram-
negative bacteria [60]. Colistin resistance is often associ-
ated with chromosomal point mutations that affect the 
expression of regulators, which modify lipid A and lead 
to alterations of LPS [61]. Bacteria can add phosphoe-
thanolamine (PEtN) and 4-amino-4-deoxy-L-arabinose 
(L-Ara4N) to lipid A via biosynthesis, thereby decreasing 
the net negative charge of lipid A to reduce its binding 
affinity to polymyxins [62, 63]. The synthesis and trans-
fer of PEtN and L-Ara4N are mediated by the expression 
of pmrCAB and arnBCADTEF (also called pmrHFI-
JKLM) [64] which were regulated by a two-component 

Fig. 3  Phylogenetic analysis of E. coli and K. pneumoniae isolates. A Phylogenetic analysis of E. coli isolates in Guangdong, China. Isolates obtained 
in this study are highlighted in red. B Phylogenetic analysis of K. pneumoniae isolates in Anhui and Guangdong, China. The analysis was performed 
using Parsnp [54] and iTOLv4 [55]
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system (TCS) PmrA/PmrB [65, 66]. Mutations in the 
genes encoding PmrA/PmrB were shown to contribute 
to polymyxin resistance [67, 68]. Moreover, another TCS 
PhoP/PhoQ is known to develop polymyxin resistance 
via activation of its posttranscriptional activator PmrD to 
induce expression of the PmrA/PmrB system [69]. Muta-
tions in the genes encoding the PhoP/PhoQ were also 
associated with colistin resistance [70]. Here, we report 
four polymyxin-resistant Enterobacteriaceae strains. 
Among them, K. pneumoniae 16BU137 and E. coli 
17MR471 carries mcr-1, and K. pneumoniae KP20191015 
carry mcr-8. The mcr-1 in 17MR471 is located on the 
chromosome, and the surrounding sequence is a typi-
cal Tn 6330 structure, (ISApl1)2-mcr-1-pap2. The mcr-
1 in 16BU137 lacks upstream ISApl1 and downstream 
ISApl1, but still retains pap2. ISApl1 may be lost due to 
its involvement in mcr-1 transposition [18, 19]. However, 
pap2 always exists downstream of mcr-1, which seems 
to suggest that pap2 may play an indispensable function 

for mcr-1. Through further experimental verification, we 
identified K. pneumoniae 19PDR22 which conferred high 
MIC of colistin, while no known plasmid-mediated colis-
tin genes was found. We found an IS903B-like element 
(97% similarity to IS903B) inserted into the upstream 
sequence of mgrB. This insertion appeared at position 
− 18 bp of the mgrB, which may lead to the inactivation 
of mgrB by interrupting its promoter region. The inac-
tivation of mgrB conferred colistin resistance has been 
reported previously [71]. IS integration has also been 
reported to induce colistin resistance via transposition 
into the upstream putative promoter region of mgrB [72]. 
IS903, a member of IS5 family, is implicated in antibiotic 
resistance. Insertion sequences of the IS5 family have 
also been reported to truncate mgrB in Klebsiella oxytoca 
and yield elevated MICs for colistin [73]. More studies 
are needed to evaluate the mobilization of these elements 
from plasmids to the chromosome to disrupt the expres-
sion of potential resistance-associated genes. Our data 
show that the transformation efficiency of p16BU137_
mcr-1.1 is higher than that of pKP20191015_mcr-8. 
This may indicate that the plasmid carrying mcr-1 has a 
higher transformation efficiency and stronger transmis-
sion ability than the plasmid carrying mcr-8. However, 
the experimental results still have limitations due to 
the small number of strains in this study. 16BU137 and 
KP20191015 carries the mcr-like genes, meanwhile car-
ries a variety of ESBL genes, such as blaSHV, blaCTX and 
blaTEM. The existence of these resistance genes makes 
MDR enterobacteria a huge threat to public medical and 
health safety.

Conclusion
We present the complete genome of four polymyxin-
resistant strains (including two clinically isolated strains 
and two environmentally isolated strains, both clinically 
isolated strains are K. pneumoniae). The high-quality 
complete genome sequence generated in this study will 
help to further study the mechanism of polymyxin resist-
ance of K. pneumoniae and the horizontal transfer path-
way of mcr-like genes. Although two strains are isolated 
from the environment, they still have high polymyxin 
resistance. And the types of virulence factors are basi-
cally the same as clinical strains, and still have the risk 
of infecting humans. These also warns us that the multi-
drug resistant K. pneumoniae has spread seriously in 
China and needs to be controlled as soon as possible.

Methods
Bacterial isolation
The MIC of polymyxin B was tested on the MDR clinical 
isolates isolated from the inpatients in Affiliated Hospi-
tal of Anhui University of Traditional Chinese Medicine 

Table 3  Virulence factors predicted with VFDB database

a –, indicates virulence factor negative
b +, indicates virulence factor positive

Gene 16BU137 17MR471 19PDR22 KP20191015

aslA –a + b – –

astA + + – –

cseA + + – –

csgB/F/G – + – –

ecpA/B/C/D/E/R + + + +
entA/B + + + +
entC/D/E/F/S – + – –

espL1 – + – –

espR1 – + – –

espX1 – + – –

espX4 – + – –

fepA – + – –

fepB – + – –

fepC + + + +
fepD – + – –

fepG – + – –

fes – + – –

fimA/B/C/D/E/F/G/H/I – + – –

fyuA – – + –

gspD/E/F/G/H/I – + – –

gspK/L/M – + – –

irp1/2 – – + –

iucA/B/C + – + –

iutA + – + –

ompA + + + +
rmpA2 – – + –

ybtA/E/P/Q/S/T/U/X – – + –
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and the Anhui Provincial Hospital in 2019, and two 
polymyxin B resistant isolates were obtained (K. pneu-
moniae 19PDR22 and K. pneumoniae KP20191015). 
The environmental isolates of K. pneumoniae 16BU137 
and E. coli 17MR471 were obtained from our previ-
ous studies [32]. They all carried mcr-1 and were resist-
ant to polymyxin B. Briefly, the environmental samples 
were collected using sterilized swab with saline, and cul-
tured by broth medium. Then, the cultured samples were 
plated on the MacConkey agar with colistin (2 μg/mL) 
and cultured under 37 °C overnight. Subsequently, we 
randomly selected 5 colonies for each plate which were 
subject to screen mcr-1 gene by PCR. Only one colony 
for each sample was included for the subsequent study. 
K. pneumoniae 19PDR22 was isolated from the urine of 
patient with urinary tract infection, and K. pneumoniae 
KP20191015 was isolated from the sputum of patient 
with severe pneumonia. Sputum and urine were plated 
on blood agar plates and cultured at 37 °C to isolate bac-
terial clones. VITEK 2 Compact System (bioMérieux, 
France) was used to identify positive culture strains.

Determination of minimum inhibitory concentration
K. pneumoniae and E. coli were cultured overnight in LB 
liquid medium at 37 °C for 220 rpm according to 1:100, 
and a small amount of liquid medium was streaked on 
LB plate and incubated overnight in 37 °C constant tem-
perature incubator. Several monoclonal strains were 
selected to adjust the concentration of bacteria in MH 
(Mueller-Hinton Broth) medium so that the concentra-
tion of bacteria reached OD600 = 0.4 and then diluted 200 

times in MH medium [74]. Mix 75 ml of MH medium 
with different concentrations of polymyxin B and 75 ml 
of MH medium with diluted bacterial solution and add 
them to each well of a 96-well plate according to the 
polymyxin concentration gradient. The final CFU of the 
well is 5 × 105. Each concentration gradient was divided 
into three parallel groups and grown at 37 °C and 220 rpm 
with shaking for 24 and 48 h. The experiment was 
repeated three times independently.

Plasmid conjugation experiments
E. coli J53 (LacZ–, AzrR, RifR) was used as the recipi-
ent, and the mcr-like gene-positive strain (16BU137, 
KP20191015) was used as the donor. Overnight culture 
(2 mL) of each donor and recipient bacteria was mixed 
together at a ratio of donor to recipient of 1:3. The mix-
ture was added to a final volume of 5 mL LB liquid 
medium, and incubate at 37 °C for 12–18 h. Then spot-
ted the mixture on Muller-Hinton agar plates contain-
ing 100 mg/L sodium azide and 2 mg/L polymyxin B as a 
selective medium for E. coli J53 transconjugants. Detec-
tion of mcr-like gene by PCR confirmed the putative 
transconjugants. Use wzi gene primers, mcr-1 gene prim-
ers and mcr-8 gene primers to distinguish the recipient 
strain (16BU137 and KP20191015) from the donor strain 
(J53).

Whole‑genome sequencing and genotyping
K. pneumoniae and E. coli were cultured overnight in 
LB medium. Bacterial samples (5000 g 10 min at 4 °C) 
were collected and frozen at − 80 °C. The genomes of 

Table 4  Colistin resistance related gene in four isolates

Gene 16BU137 17MR471 19PDR22 KP20191015

arnD Uniprot ID: P76472 Uniprot ID: P76472 Uniprot ID: P76472 Uniprot ID: P76472

emrA Uniprot ID: P27303 Uniprot ID: P27303 Uniprot ID: P0DPR6*2;
Uniprot ID: P27303

Uniprot ID: P0DPR6*2;
Uniprot ID: P27303

emrB Uniprot ID: P0AEJ0 Uniprot ID: P0AEJ0 Uniprot ID: P0DPR7;
Uniprot ID: P0AEJ0

Uniprot ID: P0DPR7;
Uniprot ID: P0AEJ0

eptB Uniprot ID: P37661 Uniprot ID: P37661 Uniprot ID: P37661 Uniprot ID: P37661

mcr-like genes mcr-1.1 mcr-1.1 None mcr-8

mgrB Uniprot ID: B5XQ45 Uniprot ID: P64512 Uniprot ID: B5XQ45, IS 903 is 
inserted upstream

Uniprot ID: B5XQ45

opgE Uniprot ID: P75785 Uniprot ID: P75785*2 Uniprot ID: P75785 Uniprot ID: P75785

phoP Uniprot ID: P13792;
Uniprot ID: D0ZV90

Uniprot ID: P23836 Uniprot ID: P0DM78;
Uniprot ID: P13792;
Uniprot ID: D0ZV90

Uniprot ID: P0DM78;
Uniprot ID: P13792;
Uniprot ID: D0ZV90

phoQ Uniprot ID: P23837 Uniprot ID: P23837 Uniprot ID: P23837 Uniprot ID: P23837

pmrA (basR) Uniprot ID: P30843 Uniprot ID: P30843 Uniprot ID: P30843 Uniprot ID: P30843

pmrB (basS) Uniprot ID: P30844 Uniprot ID: P30844 Uniprot ID: P30844 Uniprot ID: P30844

pmrC (eptA) Uniprot ID: P36555 Uniprot ID: P30845 Uniprot ID: P36555 Uniprot ID: P36555

pmrD Uniprot ID: P37589 Uniprot ID: P37590 Uniprot ID: P37589 Uniprot ID: P37589
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four isolates were performed using a PacBio RS II plat-
form and Illumina HiSeq 4000 platform at the Beijing 
Genomics Institute (BGI, Shenzhen, China). Four SMRT 
cells Zero-Mode Waveguide arrays of sequencing, were 
used by the PacBio platform to generate the subreads set. 
PacBio subreads (length < 1 kb) were removed. The pro-
gram Pbdagcon (https://​github.​com/​Pacif​icBio​scien​ces/​
pbdag​con) was used for self-correction. Draft genomic 
unitigs, which are uncontested groups of fragments, were 
assembled using the Celera Assembler against a high 
quality corrected circular consensus sequence subreads 
set. To improve the accuracy of the genome sequences, 
GATK (https://​www.​broad​insti​tute.​org/​gatk/) and SOAP 

Table 5  Antimicrobial resistance genes predicted with 
ResFinder-3.2

Gene Identity(%) Antibiotic_
Resistance

Position

KP20191015

aac(3)-IV 100 Aminoglycoside Plasmid

aadA1 100 Aminoglycoside Plasmid

aadA2b 99.87 Aminoglycoside Plasmid

aph(3″)-Ib 100 Aminoglycoside Plasmid

aph(3′)-Ia 100 Aminoglycoside Chromosome/
Plasmid

aph(6)-Id 100 Aminoglycoside Plasmid

armA 100 Aminoglycoside Plasmid

blaCTX-M-15 100 Beta-lactam Plasmid

blaDHA-1 100 Beta-lactam Plasmid

blaSHV-182 99.88 Beta-lactam Chromosome

blaTEM-1B 100 Beta-lactam Plasmid

mcr-8 99.71 Colistin Plasmid

fosA 99.27 Fosfomycin Plasmid

mph(A) 100 Macrolide Plasmid

mph(E) 100 Macrolide Plasmid

msr(E) 100 Macrolide Plasmid

catA2 96.11 Phenicol Plasmid

cmlA1 99.92 Phenicol Plasmid

oqxA 100 Quinolone Chromosome

oqxB 100 Quinolone Chromosome

qnrB4 100 Quinolone Plasmid

sul1 100 Sulphonamide Plasmid

sul3 100 Sulphonamide Plasmid

tet(D) 100 Tetracycline Plasmid

19PDR22

aac(3)-IId 99.88 Aminoglycoside Chromosome

aadA2b 99.87 Aminoglycoside Plasmid

aadA5 100 Aminoglycoside Plasmid

aph(3″)-Ib 100 Aminoglycoside Plasmid

aph(6)-Id 100 Aminoglycoside Plasmid

armA 100 Aminoglycoside Plasmid

rmtB 100 Aminoglycoside Plasmid

blaCTX-M-65 100 Beta-lactam Plasmid

blaKPC-2 100 Beta-lactam Plasmid

blaSHV-12 100 Beta-lactam Chromosome/
Plasmid

blaSHV-182 99.77 Beta-lactam Chromosome

blaTEM-1A 100 Beta-lactam Plasmid

blaTEM-1B 100 Beta-lactam Chromosome/
Plasmid

blaTEM-1C 100 Beta-lactam Plasmid

fosA 99.27 Fosfomycin Chromosome

mph(A) 100 Macrolide Chromosome

mph(E) 100 Macrolide Plasmid

msr(E) 100 Macrolide Plasmid

sul1 100 Sulphonamide Plasmid

sul2 100 Sulphonamide Plasmid

Table 5  (continued)

Gene Identity(%) Antibiotic_
Resistance

Position

dfrA17 100 Trimethoprim Plasmid

16BU137

aac(3)-IId 99.88 Aminoglycoside Plasmid

aac(6′)-Ib-cr 100 Aminoglycoside Plasmid

aadA16 99.65 Aminoglycoside Plasmid

aph(3″)-Ib 100 Aminoglycoside Plasmid

aph(3′)-Ia 99.88 Aminoglycoside Plasmid

aph(6)-Id 100 Aminoglycoside Plasmid

blaCTX-M-3 100 Beta-lactam Plasmid

blaSHV-110 99.77 Beta-lactam Chromosome

blaTEM-1B 100 Beta-lactam Plasmid

mcr-1.1 100 Colistin Plasmid

fosA 99.29 Fosfomycin Chromosome

mph(A) 100 Macrolide Plasmid

floR 98.27 Phenicol Plasmid

aac(6′)-Ib-cr 100 Quinolone Plasmid

oqxA 100 Quinolone Chromosome

oqxB 100 Quinolone Chromosome

qnrB2 99.84 Quinolone Plasmid

qnrS1 100 Quinolone Plasmid

ARR-3 100 Quinolone Plasmid

sul1 100 Rifampicin Plasmid

sul2 99.88 Sulphonamide Plasmid

tet(A) 100 Tetracycline Plasmid

dfrA27 100 Trimethoprim Plasmid

17MR471

blaTEM-1B 100 Beta-lactam Plasmid

mcr-1.1 100 Colistin Chromosome

mdf(A) 99.92 Macrolide Chromosome

floR 98.19 Phenicol Plasmid

oqxA 100 Quinolone Plasmid

oqxB 99.97 Quinolone Plasmid

tet(B) 100 Tetracycline Chromosome

tet(M) 96.15 Tetracycline Plasmid

https://github.com/PacificBiosciences/pbdagcon
https://github.com/PacificBiosciences/pbdagcon
https://www.broadinstitute.org/gatk/
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tool packages (SOAP2, SOAPsnp, SOAPindel) were used 
to make single-base corrections.

De novo hybrid assembly both of short Illumina reads 
and long PacBio reads was performed using Unicycler 
v0.4.3 [75]. Complete circular contigs were then cor-
rected using Pilon v1.22 with Illumina reads. For each 
de novo assembled genome, coding sequences were pre-
dicted using Prodigal (v. 2.6) [76] and annotated using the 
rapid prokaryotic genome annotation tool Prokka [77]. 
Acquired antimicrobial resistance genes (ARGs) were 
identified using ABRicate version 0.5 (https://​github.​
com/​tseem​ann/​abric​ate) by aligning genome sequences 
to the ResFinder database [78]. The virulence factors of 
the isolates were identified using VFDB database [79]. 

Insertion sequence (IS) elements were determined with 
ISFinder (https://​www-​isfin​der.​bioto​ul.​fr). In silico multi-
locus sequence typing (MLST) was performed by MLST 
1.8 (https://​cge.​cbs.​dtu.​dk/​servi​ces/​MLST/). Plasmid 
replicon types were detected using PlasmidFinder v1.3 
[80].

Phylogenetic analysis
We collected all 87 E. coli strains from Guangdong, China 
and all 182 K. pneumoniae strains from Guangdong and 
Anhui, China (182 strains from Guangdong and 70 from 
Anhui) in the NCBI database (https://​www.​ncbi.​nlm.​nih.​
gov/​patho​gens/) as of December 2020. HarvestTools kit 
(Parsnp, Gingr and HarvestTools) was used to perform 

Fig. 4  Circular chromosome map of p16BU137_mcr-1.1

https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://www-isfinder.biotoul.fr
https://cge.cbs.dtu.dk/services/MLST/
https://www.ncbi.nlm.nih.gov/pathogens/
https://www.ncbi.nlm.nih.gov/pathogens/
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comparative genomics analysis and phylogenetic analy-
sis of different isolates, Interactive tree of life (iTOL) v5 
(http://​itol.​embl.​de/) was used to construct a maximum 
likelihood phylogenetic tree [54, 55].
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